北工大汪浩团队 ACB:金属边界限域Pt原子构筑实现多重氢催化转化 – 材料牛
第一作者: 张建华 通讯作者:周开岭,李洪义,大汪队 多重汪浩 通讯单位: 北京工业大学材料科学与工程学院新型功能材料教育部重点实验室,浩团化转化材北京工业大学碳中和未来技术学院 论文DOI:10.1016/j.apcatb.2024.124393 全文速览: 单原子材料作为催化领域的金界限一个新兴分支,近年来取得了巨大的属边实现发展。然而,域Pt原因金属位点独立分散特性引起的构筑催化位点不足、质量比活度低,氢催严重阻碍了单原子材料的料牛进一步发展和工业化应用。继在单原子材料组分设计(J. Mater. Chem. A,北工 2022, 10, 25692, Adv. Sci. 2021, 2100347; Energy Environ. Sci. 2020, 13, 3082)和电子态调控(Chem. Eng. J., 2023, 454, 140557; Nat. Commun., 2021, 12, 3783)的基础上,该团队采用缺陷诱导的大汪队 多重有序电沉积策略,在Co/Co(OH)2纳米层级结构中构筑出了金属相界限域的浩团化转化材Pt单原子(PtSA-Co@Co-Co(OH)2)。该Pt原子呈现出较大的金界限原子暴露比、较高的属边实现稳定性和金属电子态,在催化水电解制氢过程中,域Pt原能够在保持富电子态的同时,驱动多重H*反应中间体转化,实现H2高效制备,原子活性高达5.92 A mg-1,是商业Pt/C催化剂的37倍。研究成果以“Metal edge confined platinum atoms in metal/hydroxide hierarchy structure for multiple hydrogen conversion and evolution”为题发表在国际知名期刊Applied Catalysis B: Environment and Energy上,北京工业大学材料学院博士生张建华为第一作者。 背景介绍: 单原子催化剂因其100%的原子利用效率,为多相催化提供了一个理想的平台,在众多关键催化反应中展现出优异的活性和独特的选择性。然而,单分散的金属原子表面能较高,易于团聚。因此,大多数单原子催化剂的金属负载质量低于1.5 wt%,导致催化活性位点不足、质量比活性较低,阻碍了单原子材料的进一步发展和工业化应用。此外,当前大多数单原子催化剂(SACs)的金属原子锚定在载体材料的平面晶格中。然而,平面内原子构型会导致金属原子配位数增加、电子损失率增大,引起金属原子暴露面积减小、原子利用率降低、原子价态升高、还原反应动力学迟缓等问题。因此,如何基于载体材料结构设计和制备手段改性,构筑出具有优异原子构型和电子结构的单原子催化材料,是解决单原子孤立分散特性与高质量活性比之间矛盾的关键。 本文亮点: (1)采用缺陷诱导有序电沉积策略,在二维Co/Co(OH)2多级结构在中,构筑出了金属Co相边界限域的Pt单原子(PtSA-Co@Co-Co(OH)2),实现了高效的电解水制氢; (2)受金属Co相边缘约束的Pt原子显示出较大的金属原子暴露比和类金属电子态,使得该Pt原子能够以更适宜的H结合能(DGH*=-0.00068 eV),同时与多个H*结合,实现多重氢还原转化; (3)将上述构筑的Pt单原子材料集成在银纳米线(Ag NWs)导电网络上,构建出自支撑结构的催化剂电极,实现了催化水电解析氢高达5.92 A mg-1的Pt原子质量活性,是商业Pt/C催化剂的37倍,为高效单原子材料设计提供了新的思路。 图文解析: 利用水热法制备了Ag NWs,并将其涂覆在柔性布料上以形成Ag NWs导电网络。随后,采用多步原位电沉积技术,在Ag NWs导电网络上构筑出了金属边界限域的Pt单原子材料(PtSA-Co@Co-Co(OH)2)。如图1a-d所示,TEM图像表明,PtSA-Co@Co-Co(OH)2主要由层状纳米片结构组成。高分辨率透射电子显微镜(HRTEM,图1e)图像证实了Co(OH)2纳米片表面存在金属Co团簇。图1m中晶面间距约为0.25 nm,对应于Co金属的(100)晶面。放大后的HAADF-STEM图像(图1m)表明,大多数Pt单原子锚定在金属Co纳米簇的边缘,具有较大的原子暴露比。 图1 PtSA-Co@Co-Co(OH)2催化剂微结构表征。 图2利用XPS研究了PtSA-Co@Co-Co(OH)2、PtSA-Co(OH)2和Co-Co(OH)2的电子态演化。PtSA-Co@Co-Co(OH)2的Pt 4f光谱与Pt/C和PtSA-Co(OH)2相比,出现了一定的负位移,说明引入金属Co相后,电子从Co向Pt转移,表明PtSA-Co@Co-Co(OH)2中Pt原子具有较高的电子密度。利用X射线吸收精细结构(XAFS)光谱对所制备催化剂的局部电子结构进行了更详细的研究。可以观察到,PtSA-Co@Co-Co(OH)2中Pt的白线强度低于PtSA-Co(OH)2,证实了PtSA-Co@Co-Co(OH)2中Pt的高的电子密度。且与Co-Co(OH)2相比,PtSA-Co@Co-Co(OH)2中Co 2p能谱的结合能出现了正偏移,证实了金属Co原子向Pt原子发生了电子转移。EXAFS傅立叶变换拟合曲线表明,在2.60 Å处,没有出现Pt foil的典型Pt-Pt键峰,证实了PtSA-Co@Co-Co(OH)2中Pt的单原子分散性。此外,Pt-Co配位数约为1.7,证实了金属Co边缘限域的Pt原子低的配位微环境。这些结果与XPS分析结果一致,表明Pt原子在PtSA-Co@Co-Co(OH)2中固定于金属Co相边缘处可以很好地保留金属性质,有利于加速H*-H2转化动力学。 图2 PtSA-Co@Co-Co(OH)2催化剂原子结构与电子结构表征。 通过理论计算(DFT),进一步揭示了催化剂的电子性质。如图3所示,PtSA-Co@Co-Co(OH)2的d带中心处于适中位置,有利于H*吸附和H2解吸。且PtSA-Co@Co-Co(OH)2和PtSA-Co在EF附近的电子占位率高于PtSA-Co(OH)2,证实了金属Co相边缘锚定的Pt原子具有较高的电子保留率。理论计算进一步表明,通过H*和OH*分别在PtSA-Co和Co/Co(OH)2界面上的优先吸附,能够促进H2O解离,加速碱性电解水的Volmer步骤。此外,金属Co相边缘固定的Pt原子显示出较大的Pt原子暴露比和适宜的H吸附自由能(∆GH*,-0.00068 eV),能够同时促进多重H*转化(2H*+2e-®H2)),从而实现了碱性电解水制氢性能的整体提升。 图3 PtSA-Co@Co-Co(OH)2催化剂在碱性电解水催化过程的理论计算。 如图4所示,通过催化性能测试可知,PtSA-Co@Co-Co(OH)2催化剂在HER中表现出优异的性能,只需要97 mV的低过电位就可以达到100 mA cm-2的高电流密度。这一性能明显优于PtSA-Co(OH)2、PtSA-Co和Pt/C催化剂,表明在碱性介质中,通过在金属Co相边缘构建Pt单原子,能够获得最佳的HER活性。此外,与PtSA-Co(OH)2和PtSA-Co相比,PtSA-Co@Co-Co(OH)2的Tafel斜率更小,为43.03 mV dec-1,验证了PtSA-Co@Co-Co(OH)2在碱性HER中的典型Volmer-heyrovsky机制,与上述理论模拟结果保持一致。在过电位为100 mV时,PtSA-Co@Co-Co(OH)2的Pt质量活性为5.92 A mg-1,比商用Pt/C催化剂高37倍, Pt原子位点的转换频率(TOFs)比Pt/C催化剂高38.88倍,进一步证实通过在金属Co相边缘构建Pt单原子进行多重H*转化和析出,可以显著提高单原子催化剂的质量活性。 图4 PtSA-Co@Co-Co(OH)2催化剂碱性电催化HER性能。 为进一步探究上述催化反应机理,利用原位傅立叶红外光谱仪(ATR-FTIR),探究了PtSA-Co@Co-Co(OH)2催化反应中的吸附物动态演变。如图5a所示,随着电位的增加,PtSA-Co@Co-Co(OH)2的ATR-FTIR光谱在3525 cm-1处吸收带逐渐增强,对应于H3O+中O-H基团的拉伸振动,证实了H2O解离的促进作用。在2017 cm-1处的吸收带也呈现出逐渐增强的趋势,对应于Pt-H的拉伸振动。此外,PtSA-Co@Co-Co(OH)2能够在40小时内保持稳定的H3O+和Pt-H吸收信号(图5b),证实了金属边缘限制的Pt原子在Co/Co(OH)2层级结构中的稳定原子结构,上述催化反应机制通过准原位XPS分析也可以得到证实(图5c-e)。 图5 基于原位/准原位测试表征手段的机理分析。 总结与展望: 本文报道了一种由Co/Co(OH)2层次结构金属相边界限域的Pt单原子催化剂(PtSA-Co@Co-Co(OH)2)。实验测试表明,在100 mA cm-2的电流密度下,所设计的催化剂具有较高的碱性HER性能,过电位为97 mV时,质量活性达到5.92 A cm-2,是商业Pt/C催化剂的37倍。原位/非原位实验表征和理论计算表明,PtSA-Co@Co-Co(OH)2具有较强的H2O吸附能力和解离能力,其中,H*在PtSA-Co金属表面的优先吸附和Co/Co(OH)2界面对OH*的优先亲和性,促进了H2O的解离(Volmer步骤)。更重要的是,通过将Pt原子锚定在金属Co边缘,能够获得更大的Pt原子暴露比和更高的电子占据态,使得该Pt单原子能够以更适宜的亲和能同时结合多个H原子,促进多重H*-H2转化和H2的脱附。该金属相边界协同的单原子催化剂有助于解决传统单原子材料所面临的单分散特征与高质量活性间不兼容的问题。 文献信息: Jianhua Zhang, JianYu Cai, Kai-Ling Zhou,* Hong-Yi Li,* Jingbing Liu, Yuhong Jin, and Hao Wang,* Metal edge confined platinum atoms in metal/hydroxide hierarchy structure for multiple hydrogen conversion and evolution, Applied Catalysis B: Environment and Energy 358 (2024) 124393. https://doi.org/10.1016/j.apcatb.2024.124393 课题组介绍 汪浩:北京工业大学教授,博士生导师。长期从事锂离子电池、金属-空气电池、电致变色材料与器件、电催化等方面的研究。以通讯作者在化学、材料领域国际知名期刊Nat. Commun., Energy Environ. Sci., Nano Energy,Adv. Energy Mater., Adv. Funct. Mater., Appl. Catal. B-Environ., Energy Storage Mater., Mater. Horiz., Chem. Eng. J., J. Mater. Chem. A, Small等上面发表SCI论文100余篇,SCI引用5000余次,获得中国发明专利60余项。主持国家重点研发计划、国家自然科学基金、北京市科委计划项目、北京市教委科技计划重点项目、JKW装备预研项目、国家电网公司科技计划等项目。以第一完成人获2008年北京市科技进步三等奖。 周开岭:北京工业大学校聘教授,博士生导师,入选2023-2025年度北京市青年人才托举工程,获2022年北京市优秀博士论文,2022年中国硅酸盐学会优秀博士学位论文提名等。目前主要围绕氢能关键材料与技术展开相关研究工作,主持国家自然科学基金、中国博士后科学基金、北京市博后基金、企事业委托项目等。以第一作者和通讯作者身份在Nature Communications、Energy & Environmental Science、Appl. Catal. B Environ.Energy等国际一流刊物上发表SCI论文30余篇;总引用次数超过1500余次,2篇入选 ESI前1%高被引论文。 李洪义:北京工业大学教授,博士生导师,2013年入选北京市“青年拔尖人才”培养计划,2014年入选北京市“高创计划”青年拔尖人才,2016年入选了北京工业大学“青年百人”人才计划。2013年1月-2014年1月公派赴麻省理工学院进行访问研究1年,主要从事原位透射电镜观察一维纳米材料充放电过程中材料微观结构变化规律及其储锂机制。在Nano Research、Nanoscale、Biomaterials、ACS Appl. Mater. Inter.等期刊上发表SCI收录论文80余篇,引用1000余次。主持国家自然科学基金2项,北京市自然科学基金重点项目在内的省部级以上课题8项;作为骨干人员,参与国家重点研发计划、863计划、北京市创新团队等项目10余项。
-
上一篇
-
下一篇
- 最近发表
- 随机阅读
-
- 陕煤澄开百良公司:以“建家工做”引收工会工做提量删效
- 普渡机械人提供基于PUDU CC1的净净处置妄想
- 萌力醉觉,为狸而战!《猎魂醉觉》×阿狸童话冒险六一动身
- 下量量半导体纤维!北洋理工小大教&深圳先进院&苏州纳米所三校联收Nature! – 质料牛
- 新疆试面供电所屋顶建光伏电站
- 网易邮箱若何配置邮件揭示
- 网易邮箱若何复原复原通讯录
- 蚂蚁庄园6月7日谜底
- 中汽协:前9月外洋销量前十车企共收卖1824.1万辆汽车,占比超80%
- imec真现硅基量子面创记实低电荷噪声
- 吕坚院士团队最新综述Chemical Reviews – 纳米挨算金属质料中的相工程 – 质料牛
- 北科小大Science:下PCE太阳能电池的水系分解! – 质料牛
- 陕煤澄开百良公司:自动探供“党建+牢靠”新格式
- 顺水热足游曝光两周,预约已经破400万
- 相册小大师若何浑算缓存
- 保隆科技患上到BDU液热板名目定面
- 再下一乡!爱旭带ABC光伏组件进进“25%”时期
- SK海力士GDDR7隐存功能飙降60%
- 2022年下考模拟器进心正在哪
- 安徽开肥:我国初次真现量子牢靠物联网燃气表批量化商业操做
- 搜索
-
- 友情链接
-
- 邢台宁晋1874户扩散式光伏收电名目并网收电
- 河北省蔚县光伏扶贫财富睹闻
- 特斯推太阳能屋顶或者马长进进欧洲市场
- 国内尾个“远整能耗”修筑农宅咋做到的?
- 30.11GW,其中扩散式光伏新删拆机同比删减41.3%
- 兰州村落降探去世少新模式 光伏收电破村落总体经济“空壳”
- 阳光电源助力阿联酋尾个水里流离电站离网收电
- 2020年安拆光伏的3小大缘故
- 十四五终浙江扩散式光伏拆机将抵达1400万千瓦
- 150MW!法国第9轮工商业屋顶光伏系统招标下场出炉
- 四川凉山州周齐实现“十三五”光伏扶贫使命
- 68个分说式风电名目获批 乌龙江数目至多
- 光伏扶贫:山东脱贫路上的“电力启当”
- 飓风天域的屋顶光伏拆配若何具备回问复原力
- 国务院扶贫办:光伏扶贫工做百问百问 详解存量名目审核
- 光伏+机场,天开光能为日照机场注进绿色能源
- “农光互补”扶贫新模式
- 光伏财富太阳能电池板支受收受足艺钻研患上到突破
- 柔性直流用电:修筑用能的将去
- 芬兰最小大的屋顶太阳能收电厂古晨正在Lempl降成!
- 特斯推真要进进中国屋顶光伏市场?
- 2019好国西南部安拆800MW屋顶光伏 2020年各州有何政策目的?
- 山东光伏公司蒙受“老好”被短巨额电费电站出法呵护
- 太阳能充电桩厦门制 已经走出国门出心多个国家
- 晶科减进户用光伏屋顶市场抢夺
- 青海已经建成4类光伏扶贫名目
- 齐国尾个杂太阳能朱水屏智能公交电子站牌正在北昌投进操做
- 河北石家庄:“光伏银止”助力贫贫户脱贫
- 工商业扩散式光伏的无奈战徐苦
- 被迫安拆令去世效!好国减州住宅光伏即将收做
- 山西:5196座光伏扶贫电站累计结算支益13.63亿元
- 2020年户用光伏规模5亿 补掀多小大最相宜?
- 政策出炉专弈底细 比起光伏补掀 您更理当闭注那个
- “誉林名目后绝” 华能召开伊当湾光伏名目防风固沙去世态环保钻研会 睁开固沙防护
- 山西小大同市往年将投放5100个新型太阳能环保剩余箱
- 山东东营市:小大力奉止扩散式光伏收电名目
- 特斯推试图“救命”太阳能歇业
- 陕西省建成光伏扶贫电站突破百万千瓦
- 政策已经定丨户用光伏名目可能抓松开工了!
- 特斯推欲借中国市场救命太阳能战储能两小大低迷歇业 但远景借是已经知数
- 山东:调以及拷打扩散式新能源收电名目
- 山东利津县扩散式光伏收电助力村落总体经济去世少
- 2020光阴伏新删拆机预期调低至25~35GW
- 每一年先占70亿+补掀,14GW光伏扶贫名目进目录
- 扩散式企业:歇业出法睁开 电费支进降降 借有可能被奖款!
- 妨碍2019年9月尾乌克兰屋顶光伏收电拆机容量抵达350MW
- 2020光阴伏修筑市场迎去小大去世少
- 光伏+修筑相散漫 不但仅是提降颜值!
- 扩散式光伏去世少不如预期 幻念如斯歉谦 真践为甚么如斯骨感
- 新疆上半年实现光伏止政村落电网延少工做
- 2020年 减小大户用光伏的歇业挨算
- 中国海拆中标中广核30MW分说式风电名目
- 扩散式光伏电站若何避让危害 患上到最小大化投资支益?
- 法国会集5000余吨光伏组件妨碍支受收受
- 乌克兰逾越2万个家庭安拆了小型光伏电站
- “太阳能+”正在农业供热规模的多少种真现格式
- 小大量扶贫名目仍已经纳进补掀目录!
- 山西院签定泰国诗琳通小大坝58.5兆瓦浮体光伏EPC开同
- 马斯克引爆光伏见识股 光伏屋顶市场将去可期?
- 凉山:已经周齐实现“十三五”光伏扶贫使命