锂电方向想发好文章?常见锂电机理研究方法了解一下! – 材料牛
近年来国际知名期刊上发表的锂电类文章要不就是能做出突破性的性能,要不就是向法解能把机理研究的十分透彻。而机理研究则是想发下材考验科研工作者们的学术能力基础和科研经费的充裕程度。此外机理研究还需要先进的好文仪器设备甚至是原位表征设备来对材料的反应进行研究。目前材料研究及表征手段可谓是章常五花八门,在此小编仅仅总结了部分常见的见锂究方锂电等储能材料的机理研究方法。限于水平,电机必有疏漏之处,锂电理研料牛欢迎大家补充。向法解 小编根据常见的想发下材材料表征分析分为四个大类,材料结构组分表征,好文材料形貌表征,章常材料物理化学表征和理论计算分析。见锂究方 材料结构组分表征 目前在储能材料的电机常用结构组分表征中涉及到了XRD,NMR,XAS等先进的表征技术,此外目前的锂电理研料牛研究也越来越多的从非原位的表征向原位的表征进行过渡。利用原位表征的实时分析的优势,来探究材料在反应过程中发生的变化。此外,越来越多的研究工作开始涉及了使用XAS等需要使用同步辐射技术的表征,而抢占有限的同步辐射光源资源更显得尤为重要。 XANES X射线吸收近边结构(XANES)又称近边X射线吸收精细结构(NEXAFS),是吸收光谱的一种类型。在X射线吸收谱中,阈值之上60eV以内的低能区的谱出现强的吸收特性,称之为近边吸收结构(XANES)。它是由于激发光电子经受周围原子的多重散射造成的。它不仅反映吸收原子周围环境中原子几何配置,而且反映凝聚态物质费米能级附近低能位的电子态的结构,因此成为研究材料的化学环境及其缺陷的有用工具。目前,国内的同步辐射光源装置主要有北京同步辐射装置,(BSRF,第一代光源),中国科学技术大学的合肥同步辐射装置 (NSRL,第二代光源)和上海光源(SSRF,第三代光源),对国内的诸多材料科学的研究起到了巨大的作用。 近日,王海良课题组利用XANES等先进表征技术研究富含缺陷的单晶超薄四氧化三钴纳米片及其电化学性能(Adv. Energy Mater. 2018, 8, 1701694), 如图一所示。该研究工作利用了XANES等技术分析了富含缺陷的四氧化三钴的化学环境,从而证明了其中氧缺陷的存在及其相对含量。此外通过EAXFS证明了富含缺陷的四氧化三钴中的Co具有更低的配位数。这些条件的存在帮助降低了表面能,使材料具有良好的稳定性。利用同步辐射技术来表征材料的缺陷,化学环境用于机理的研究已成为目前的研究热点。 Figure 1. Analysis of O-vacancy defects on the reduced Co3O4nanosheets. (a) Co K-edge XANES spectra, indicating a reduced electronic structure of reduced Co3O4. (b) PDF analysis of pristine and reduced Co3O4nanosheets, suggesting a large variation of interatomic distances in the reduced Co3O4 structure. (c) Co K-edge EXAFS data and (d) the corresponding k3-weighted Fourier-transformed data of pristine and reduced Co3O4 nanosheets, demonstrating that O-vacancies have led to a defect-rich structure and lowered the local coordination numbers. XRD XRD全称是X射线衍射,即通过对材料进行X射线衍射来分析其衍射图谱,以获得材料的结构和成分,是目前电池材料常用的结构组分表征手段。 原位XRD技术是当前储能领域研究中重要的分析手段,它不仅可排除外界因素对电极材料产生的影响,提高数据的真实性和可靠性,还可对电极材料的电化学过程进行实时监测,在电化学反应的实时过程中针对其结构和组分发生的变化进行表征,从而可以有更明确的对体系的整体反应进行分析和处理,并揭示其本征反应机制。因此,原位XRD表征技术的引入,可提升我们对电极材料储能机制的理解,并将快速推动高性能储能器件的发展。 目前,陈忠伟课题组在对锂硫电池的研究中取得了突破性的进展,研究人员使用原位XRD技术对小分子蒽醌化合物作为锂硫电池正极的充放电过程进行表征并解释了其反应机理(NATURE COMMUN., 2018, 9, 705),如图二所示。通过各项表征证实了蒽醌分子中酮基官能团与多硫化物通过强化学吸附作用形成路易斯酸是提升锂硫电池循环稳定性的关键。通过在充放电过程中小分子蒽醌与可溶性多硫化锂发生“化学性吸附”,形成无法溶解于电解液的不溶性产物,从而实现对活性物质流失的有效抑制,显著地增加了电池的寿命。 Fig. 2 In-situ XRD analysis of the interactions during cycling. (a)XRD intensity heat map from 4oto 8.5oof a 2.4 mg cm–2cell’s first cycle discharge at 54 mA g–1and charge at 187.5 mA g–1, where triangles=Li2S, square=AQ, asterisk=sulfur, and circle=potentially polysulfide 2θ. (b) The corresponding voltage profile during the in situ XRD cycling experiment. 材料形貌表征 在材料科学的研究领域中,常用的形貌表征主要包括了SEM,TEM,AFM等显微镜成像技术。目前材料的形貌表征已经是绝大多数材料科学研究的必备支撑数据,一个新颖且引人入胜的形貌电镜图也是发表高水平论文的不二法门。而目前的研究论文也越来越多地集中在纳米材料的研究上,并使用球差TEM等超高分辨率的电镜来表征纳米级尺寸的材料,通过高分辨率的电镜辅以EDX, EELS等元素分析的插件来分析测试,以此获得清晰的图像和数据并做分析处理。 TEM TEM全称为透射电子显微镜,即是把经加速和聚集的电子束投射到非常薄的样品上,电子在与样品中的原子发生碰撞而改变方向,从而产生立体角散射。散射角的大小与样品的密度、厚度相关,因此可以形成明暗不同的影像,影像将在放大、聚焦后在成像器件上显示出来。利用原位TEM等技术可以获得材料形貌和结构实时发生的变化,如微观结构的转化或者化学组分的改变。在锂硫电池的研究中,利用原位TEM来观察材料的形貌和物相转变具有重要的实际意义。Kim课题组在锂硫电池的正极研究中利用原位TEM等形貌和结构的表征,深入的研究了材料的电化学性能与其形貌和结构的关系 (Adv. Energy Mater., 2017, 7, 1602078.),如图三所示。 该工作使用多孔碳纳米纤维硫复合材料作为锂硫电池的正极,在大倍率下充放电时,利用原位TEM观察材料的形貌变化和硫的体积膨胀,提供了新的方法去研究硫的电化学性能并将其与体积膨胀效应联系在了一起。 Fig. 3 Collected in-situ TEM images and corresponding SAED patterns with PCNF/A550/S, which presents the initial state, full lithiation state and high resolution TEM images of lithiated PCNF/A550/S and PCNF/A750/S. 材料物理化学表征 UV-vis UV-vis spectroscopy全称为紫外-可见光吸收光谱。吸收光谱可以利用吸收峰的特性进行定性的分析和简单的物质结构分析,此外还可以用于物质吸收的定量分析。UV-vis是简便且常用的对无机物和有机物的有效表征手段,常用于对液相反应中特定的产物及反应进程进行表征,如锂硫电池体系中多硫化物的测定。 最近,晏成林课题组(Nano Lett., 2017, 17, 538-543)利用原位紫外-可见光光谱的反射模式检测锂硫电池充放电过程中多硫化物的形成,根据图谱中不同位置的峰强度实时获得充放电过程中多硫化物种类及含量的变化,如图四所示。研究者发现当材料中引入硒掺杂时,锂硫电池在放电的过程中长链多硫化物的生成量明显减少,从而有效地抑制了多硫化物的穿梭效应,提高了库伦效率和容量保持率,为锂硫电池的机理研究及其实用化开辟了新的途径。 Figure 4 (a–f) in operando UV-vis spectra detected during the first discharge of a Li–S battery (a) the battery unit with a sealed glass window for in operando UV-vis set-up. (b) Photographs of six different catholyte solutions; (c) the collected discharge voltages were used for the in situ UV-vis mode; (d) the corresponding UV-vis spectra first-order derivative curves of different stoichiometric compounds; the corresponding UV-vis spectra first-order derivative curves of (e) rGO/S and (f) GSH/S electrodes at C/3, respectively. 理论计算分析 随着能源材料的大力发展,计算材料科学如密度泛函理论计算,分子动力学模拟等领域的计算运用也得到了大幅度的提升,如今已经成为原子尺度上材料计算模拟的重要基础和核心技术,为新材料的研发提供扎实的理论分析基础。 密度泛函理论计算(DFT) 利用DFT计算可以获得体系的能量变化,从而用于计算材料从初态到末态所具有的能量的差值。通过不同的体系或者计算,可以得到能量值如吸附能,活化能等等。此外还可用分子动力学模拟及蒙特卡洛模拟材料的动力学行为及结构特征。近日, Ceder课题组在新型富锂材料正极的研究中(Nature 2018, 556, 185-190)取得了重要成果,如图五所示。这项研究利用蒙特卡洛模拟计算解释了Li2Mn2/3Nb1/3O2F 材料在充放电过程中的变化及其对材料结构和化学环境的影响。该项研究也为高性能富锰正极拓宽了其在电池领域的新的应用。 Fig. 5 Ab initio calculations of the redox mechanism of Li2Mn2/3Nb1/3O2F. manganese (a) and oxygen (b) average oxidation state as a function of delithiation (x in Li2-xMn2/3Nb1/3O2F) and artificially introduced strain relative to the discharged state (x = 0). c, Change in the average oxidation state of Mn atoms that are coordinated by three or more fluorine atoms and those coordinated by two or fewer fluorine atoms. d, Change in the average oxidation state of O atoms with three, four and five Li nearest neighbours in the fully lithiated state (x = 0). The data in c and d were collected from model structures without strain and are representative of trends seen at all levels of strain. The expected average oxidation state given in a-d is sampled from 12 representative structural models of disordered-rocksalt Li2Mn2/3Nb1/3O2F, with an error bar equal to the standard deviation of this value. e, A schematic band structure of Li2Mn2/3Nb1/3O2F. 小结 目前锂离子电池及其他电池领域的研究依然是如火如荼。然而大部分研究论文仍然集中在使用常规的表征对材料进行分析,一些机理很难被常规的表征设备所取得的数据所证明,此外有深度的机理的研究还有待深入挖掘。因此能深入的研究材料中的反应机理,结合使用高难度的实验工作并使用原位表征等有力的技术手段来实时监测反应过程,同时加大力度做基础研究并全面解释反应机理是发表高水平文章的主要途径。此外,结合各种研究手段,与多学科领域相结合、相互佐证给出完美的实验证据来证明自己的观点更显得尤为重要。 本文由材料人专栏科技顾问罗博士供稿。 相关文章:催化想发好文章?常见催化机理研究方法了解一下! 如果您想利用理论计算来解析锂电池机理,欢迎您使用材料人计算模拟解决方案。材料人组建了一支来自全国知名高校老师及企业工程师的科技顾问团队,专注于为大家解决各类计算模拟需求。如果您有需求,欢迎扫以下二维码提交您的需求,或直接联系微信客服(微信号:cailiaoren001)
-
上一篇
-
下一篇
- 最近发表
- 随机阅读
-
- 陕煤澄开百良公司:党建赋能激发红色碉堡
- 绿色修筑时期惠临 BIPV静待花开
- 下新区尾坐“光储充放”超充树模站正在BPO园区正式明相
- 中国海油初次实现超一万海里液态氢海运
- 国家能源局宣告6月户用拆机数据
- 浙江北麂岛有个国内最小大独岛光伏收电名目
- 唐山减速构建绿色低碳循环去世少经济系统
- 国网歉宁县供电公司:“规建运”协同提降配电网运行操持
- 登顶天球之巅 光伏再坐一功
- 中国电动自止车减速“出海”
- 树模性分说式风电的斥天开辟
- 国内油价 24日下 跌
- “小电池”时期开幕!宁德时期助推删混车迈进“小大电量时期”
- 开肥市往年新能源汽车产量突破100万辆
- 越北光伏新策激发组件进心小大删,新电价宽慰屋顶名目新删5254个
- 6月户用光伏拆机规模已经达预期 三面原因不容轻忽!
- 国网武汉供电公司营销经营中间:妄想“单评议”把守检查,增短处事品量赫然提降
- 去世少工商业光伏收电 国家政策为其保驾护航
- 唐山减速构建绿色低碳循环去世少经济系统
- 前三季度北边五省区齐社会用电量同比删减8.1%
- 搜索
-
- 友情链接
-
- 宏景智驾枯获单项殊枯,引收智能驾驶足艺坐异风潮
- 蚂蚁庄园今日谜底2月18日谜底最新
- 安费诺下速电缆处置妄想知足PCIe、EDSFF、OCP尺度战机架势电源要供
- 蚂蚁庄园今日谜底2月4日谜底最新
- 最新Nature Co妹妹unication: 两维背热缩短功能真现荧光粉的赫然热增强收光 – 质料牛
- 陈江照&臧志刚:回支梯度2D/3D同量结工程同时钝化体相战界里缺陷真现下效晃动钙钛矿太阳能电池 – 质料牛
- 阴川历历汉阳树芳草姜姜鹦鹉洲哪一个天名有闭
- 蚂蚁庄园今日谜底2月23日谜底最新
- 支出宝心袋铃声正在吗若何操做
- 紫光国芯携存储系列产物出席2024慕僧乌上海电子展
- 钙钛矿膜再次登上Nature:做为两维晶体管的尽缘体 – 质料牛
- 瓜子是过年时的标配整食瓜子炒焦了借可能吃吗
- 人形机械人的幻念与真践
- 过年吃饺子象征着甚么寓意
- 牛年小大凶黑包累计挨开15个黑包可患上到的牛年声誉播报叫做甚么
- 汇散秋早节目中一舞惊鸿齐舞共分为哪三小大段降
- 上交小大&北航&帝国理工NM:光电转换效力19.6%!单结有机太阳能电池创做收现新记实 – 质料牛
- 今世时冰糖葫芦惟独山楂味的吗
- AMD光线遁踪专家减盟下通,共筑Adreno GPU功能新下度
- AMD巨资支购Silo AI,减速AI去世态挨算
- MAX78002家养智能微克制器特色明面概述
- 埃森哲强化芯片设念才气,支购印度半导体设念处事商Excelmax
- 最新Science:替换电子皮肤?可将机械力修正成离子旗帜旗号的离子压电皮肤 – 质料牛
- 囤了小大量的牛羊肉过年用贮存时最佳若何做
- Nature Nanotechnology:中形战尺寸下度可调的家养设念纳米孔 – 质料牛
- 蚂蚁庄园今日谜底2月6日谜底最新
- 蚂蚁庄园今日谜底2月24日谜底最新
- 5G战AI减持!智物联跃上新台阶,海思、芯昇战乐鑫新品汇总
- 蚂蚁庄园今日谜底2月20日谜底最新
- 海伯森出席VisionChina上海机械视觉展
- 咱们有太多感慨需供放心再逐渐睁开是甚么歌
- 希恩凯出席2024慕僧乌上海电子展
- 电子科技小大教Nano Letters:两维微纳电机械件中的 松稀振动丈量战下效频率调控 – 质料牛
- 丁冬/李巨Nature:散焦量子陶瓷燃料电池界里问题下场 – 质料牛
- 刚喝完可乐最佳坐刻刷牙借是漱心
- 支出宝搜查正在吗是甚么梗
- Nature Catalysis后,汪淏田团队再收 Nature Nanotechnology! – 质料牛
- 干饭人之歌本版歌词是甚么
- 最先的压岁钱呈目下现古汉晨但当时它真正在不是真正在的钱而是
- Nat. Nanotechnol.: COF单层膜用于下效渗透收电 – 质料牛
- 夏普携手Aoi进军先进启拆市场
- 兆易坐异上半年纪迹飙降,净利润同比小大删54.18%
- 辛巴巴巴鲁给啦甚么歌
- 蚂蚁庄园今日谜底2月21日谜底最新
- 蚂蚁庄园今日谜底2月19日谜底最新
- 下跟我最佳若何跳起去
- 两十三糖瓜粘指的是尾月两十三这天的甚么详尽
- AI下功能“运力”芯片新产物仄息,规模出货小大幅提降事业
- 圣邦微电子出席2024慕僧乌上海电子展
- 蚂蚁庄园今日谜底2月7日谜底最新
- 少安小大教、浙江小大教Appl. Surf. Sci.
- 那篇nature子刊,为那两项绿色足艺拟订止业尺度 – 质料牛
- 蚂蚁庄园今日谜底2月5日谜底最新
- 喷香香港中文小大教Nature Energy:高温下用于下功率稀度水系氧化复原复原液流电池的背极电解液 – 质料牛
- 2.5D/3D启拆足艺降级,推下AI芯片功能天花板
- 弘疑电子与深圳X国企告竣开做,共绘算力歇业新蓝图
- 汪淏田 Nature Catalysis:杂度>99%、支受收受率90%!PSE反映反映器助力CO2RR – 质料牛
- 贯勾通接BMS电池电荷形态的电池失调电路
- 蚂蚁庄园今日谜底2月8日谜底最新
- 抖音最水闺蜜句子2021