锂电方向想发好文章?常见锂电机理研究方法了解一下! – 材料牛
近年来国际知名期刊上发表的锂电类文章要不就是能做出突破性的性能,要不就是向法解能把机理研究的十分透彻。而机理研究则是想发下材考验科研工作者们的学术能力基础和科研经费的充裕程度。此外机理研究还需要先进的好文仪器设备甚至是原位表征设备来对材料的反应进行研究。目前材料研究及表征手段可谓是章常五花八门,在此小编仅仅总结了部分常见的见锂究方锂电等储能材料的机理研究方法。限于水平,电机必有疏漏之处,锂电理研料牛欢迎大家补充。向法解 小编根据常见的想发下材材料表征分析分为四个大类,材料结构组分表征,好文材料形貌表征,章常材料物理化学表征和理论计算分析。见锂究方 材料结构组分表征 目前在储能材料的电机常用结构组分表征中涉及到了XRD,NMR,XAS等先进的表征技术,此外目前的锂电理研料牛研究也越来越多的从非原位的表征向原位的表征进行过渡。利用原位表征的实时分析的优势,来探究材料在反应过程中发生的变化。此外,越来越多的研究工作开始涉及了使用XAS等需要使用同步辐射技术的表征,而抢占有限的同步辐射光源资源更显得尤为重要。 XANES X射线吸收近边结构(XANES)又称近边X射线吸收精细结构(NEXAFS),是吸收光谱的一种类型。在X射线吸收谱中,阈值之上60eV以内的低能区的谱出现强的吸收特性,称之为近边吸收结构(XANES)。它是由于激发光电子经受周围原子的多重散射造成的。它不仅反映吸收原子周围环境中原子几何配置,而且反映凝聚态物质费米能级附近低能位的电子态的结构,因此成为研究材料的化学环境及其缺陷的有用工具。目前,国内的同步辐射光源装置主要有北京同步辐射装置,(BSRF,第一代光源),中国科学技术大学的合肥同步辐射装置 (NSRL,第二代光源)和上海光源(SSRF,第三代光源),对国内的诸多材料科学的研究起到了巨大的作用。 近日,王海良课题组利用XANES等先进表征技术研究富含缺陷的单晶超薄四氧化三钴纳米片及其电化学性能(Adv. Energy Mater. 2018, 8, 1701694), 如图一所示。该研究工作利用了XANES等技术分析了富含缺陷的四氧化三钴的化学环境,从而证明了其中氧缺陷的存在及其相对含量。此外通过EAXFS证明了富含缺陷的四氧化三钴中的Co具有更低的配位数。这些条件的存在帮助降低了表面能,使材料具有良好的稳定性。利用同步辐射技术来表征材料的缺陷,化学环境用于机理的研究已成为目前的研究热点。 Figure 1. Analysis of O-vacancy defects on the reduced Co3O4nanosheets. (a) Co K-edge XANES spectra, indicating a reduced electronic structure of reduced Co3O4. (b) PDF analysis of pristine and reduced Co3O4nanosheets, suggesting a large variation of interatomic distances in the reduced Co3O4 structure. (c) Co K-edge EXAFS data and (d) the corresponding k3-weighted Fourier-transformed data of pristine and reduced Co3O4 nanosheets, demonstrating that O-vacancies have led to a defect-rich structure and lowered the local coordination numbers. XRD XRD全称是X射线衍射,即通过对材料进行X射线衍射来分析其衍射图谱,以获得材料的结构和成分,是目前电池材料常用的结构组分表征手段。 原位XRD技术是当前储能领域研究中重要的分析手段,它不仅可排除外界因素对电极材料产生的影响,提高数据的真实性和可靠性,还可对电极材料的电化学过程进行实时监测,在电化学反应的实时过程中针对其结构和组分发生的变化进行表征,从而可以有更明确的对体系的整体反应进行分析和处理,并揭示其本征反应机制。因此,原位XRD表征技术的引入,可提升我们对电极材料储能机制的理解,并将快速推动高性能储能器件的发展。 目前,陈忠伟课题组在对锂硫电池的研究中取得了突破性的进展,研究人员使用原位XRD技术对小分子蒽醌化合物作为锂硫电池正极的充放电过程进行表征并解释了其反应机理(NATURE COMMUN., 2018, 9, 705),如图二所示。通过各项表征证实了蒽醌分子中酮基官能团与多硫化物通过强化学吸附作用形成路易斯酸是提升锂硫电池循环稳定性的关键。通过在充放电过程中小分子蒽醌与可溶性多硫化锂发生“化学性吸附”,形成无法溶解于电解液的不溶性产物,从而实现对活性物质流失的有效抑制,显著地增加了电池的寿命。 Fig. 2 In-situ XRD analysis of the interactions during cycling. (a)XRD intensity heat map from 4oto 8.5oof a 2.4 mg cm–2cell’s first cycle discharge at 54 mA g–1and charge at 187.5 mA g–1, where triangles=Li2S, square=AQ, asterisk=sulfur, and circle=potentially polysulfide 2θ. (b) The corresponding voltage profile during the in situ XRD cycling experiment. 材料形貌表征 在材料科学的研究领域中,常用的形貌表征主要包括了SEM,TEM,AFM等显微镜成像技术。目前材料的形貌表征已经是绝大多数材料科学研究的必备支撑数据,一个新颖且引人入胜的形貌电镜图也是发表高水平论文的不二法门。而目前的研究论文也越来越多地集中在纳米材料的研究上,并使用球差TEM等超高分辨率的电镜来表征纳米级尺寸的材料,通过高分辨率的电镜辅以EDX, EELS等元素分析的插件来分析测试,以此获得清晰的图像和数据并做分析处理。 TEM TEM全称为透射电子显微镜,即是把经加速和聚集的电子束投射到非常薄的样品上,电子在与样品中的原子发生碰撞而改变方向,从而产生立体角散射。散射角的大小与样品的密度、厚度相关,因此可以形成明暗不同的影像,影像将在放大、聚焦后在成像器件上显示出来。利用原位TEM等技术可以获得材料形貌和结构实时发生的变化,如微观结构的转化或者化学组分的改变。在锂硫电池的研究中,利用原位TEM来观察材料的形貌和物相转变具有重要的实际意义。Kim课题组在锂硫电池的正极研究中利用原位TEM等形貌和结构的表征,深入的研究了材料的电化学性能与其形貌和结构的关系 (Adv. Energy Mater., 2017, 7, 1602078.),如图三所示。 该工作使用多孔碳纳米纤维硫复合材料作为锂硫电池的正极,在大倍率下充放电时,利用原位TEM观察材料的形貌变化和硫的体积膨胀,提供了新的方法去研究硫的电化学性能并将其与体积膨胀效应联系在了一起。 Fig. 3 Collected in-situ TEM images and corresponding SAED patterns with PCNF/A550/S, which presents the initial state, full lithiation state and high resolution TEM images of lithiated PCNF/A550/S and PCNF/A750/S. 材料物理化学表征 UV-vis UV-vis spectroscopy全称为紫外-可见光吸收光谱。吸收光谱可以利用吸收峰的特性进行定性的分析和简单的物质结构分析,此外还可以用于物质吸收的定量分析。UV-vis是简便且常用的对无机物和有机物的有效表征手段,常用于对液相反应中特定的产物及反应进程进行表征,如锂硫电池体系中多硫化物的测定。 最近,晏成林课题组(Nano Lett., 2017, 17, 538-543)利用原位紫外-可见光光谱的反射模式检测锂硫电池充放电过程中多硫化物的形成,根据图谱中不同位置的峰强度实时获得充放电过程中多硫化物种类及含量的变化,如图四所示。研究者发现当材料中引入硒掺杂时,锂硫电池在放电的过程中长链多硫化物的生成量明显减少,从而有效地抑制了多硫化物的穿梭效应,提高了库伦效率和容量保持率,为锂硫电池的机理研究及其实用化开辟了新的途径。 Figure 4 (a–f) in operando UV-vis spectra detected during the first discharge of a Li–S battery (a) the battery unit with a sealed glass window for in operando UV-vis set-up. (b) Photographs of six different catholyte solutions; (c) the collected discharge voltages were used for the in situ UV-vis mode; (d) the corresponding UV-vis spectra first-order derivative curves of different stoichiometric compounds; the corresponding UV-vis spectra first-order derivative curves of (e) rGO/S and (f) GSH/S electrodes at C/3, respectively. 理论计算分析 随着能源材料的大力发展,计算材料科学如密度泛函理论计算,分子动力学模拟等领域的计算运用也得到了大幅度的提升,如今已经成为原子尺度上材料计算模拟的重要基础和核心技术,为新材料的研发提供扎实的理论分析基础。 密度泛函理论计算(DFT) 利用DFT计算可以获得体系的能量变化,从而用于计算材料从初态到末态所具有的能量的差值。通过不同的体系或者计算,可以得到能量值如吸附能,活化能等等。此外还可用分子动力学模拟及蒙特卡洛模拟材料的动力学行为及结构特征。近日, Ceder课题组在新型富锂材料正极的研究中(Nature 2018, 556, 185-190)取得了重要成果,如图五所示。这项研究利用蒙特卡洛模拟计算解释了Li2Mn2/3Nb1/3O2F 材料在充放电过程中的变化及其对材料结构和化学环境的影响。该项研究也为高性能富锰正极拓宽了其在电池领域的新的应用。 Fig. 5 Ab initio calculations of the redox mechanism of Li2Mn2/3Nb1/3O2F. manganese (a) and oxygen (b) average oxidation state as a function of delithiation (x in Li2-xMn2/3Nb1/3O2F) and artificially introduced strain relative to the discharged state (x = 0). c, Change in the average oxidation state of Mn atoms that are coordinated by three or more fluorine atoms and those coordinated by two or fewer fluorine atoms. d, Change in the average oxidation state of O atoms with three, four and five Li nearest neighbours in the fully lithiated state (x = 0). The data in c and d were collected from model structures without strain and are representative of trends seen at all levels of strain. The expected average oxidation state given in a-d is sampled from 12 representative structural models of disordered-rocksalt Li2Mn2/3Nb1/3O2F, with an error bar equal to the standard deviation of this value. e, A schematic band structure of Li2Mn2/3Nb1/3O2F. 小结 目前锂离子电池及其他电池领域的研究依然是如火如荼。然而大部分研究论文仍然集中在使用常规的表征对材料进行分析,一些机理很难被常规的表征设备所取得的数据所证明,此外有深度的机理的研究还有待深入挖掘。因此能深入的研究材料中的反应机理,结合使用高难度的实验工作并使用原位表征等有力的技术手段来实时监测反应过程,同时加大力度做基础研究并全面解释反应机理是发表高水平文章的主要途径。此外,结合各种研究手段,与多学科领域相结合、相互佐证给出完美的实验证据来证明自己的观点更显得尤为重要。 本文由材料人专栏科技顾问罗博士供稿。 相关文章:催化想发好文章?常见催化机理研究方法了解一下! 如果您想利用理论计算来解析锂电池机理,欢迎您使用材料人计算模拟解决方案。材料人组建了一支来自全国知名高校老师及企业工程师的科技顾问团队,专注于为大家解决各类计算模拟需求。如果您有需求,欢迎扫以下二维码提交您的需求,或直接联系微信客服(微信号:cailiaoren001)
- 最近发表
-
- 彭澎:过网费的尺度讲不拢 “隔墙卖电”那事干不成!
- Adv. Mater. 启里: 新型纳米药物正在肿瘤内氧化复原复原/酶双重吸应释放NO真现特异性、下效低毒癌症治疗 – 质料牛
- Chem. Soc. Rev.综述:离子液体及其衍去世质料正在锂、钠电池规模的钻研仄息 – 质料牛
- Rice University Jun Lou ACS Nano:碳纳米管删韧石朱烯 – 质料牛
- 国网喀什供电公司:电力小大数据坐异阐收助力“迎峰度夏”保供
- 东京小大教PNAS:钯经由历程与金概况开金化减速吸氢 – 质料牛
- 厦门小大教刘刚教授&袁权副教授Angew:仿去世乙肝病毒受体囊泡 – 质料牛
- Nature综述:机械进建(ML)—钻研份子战质料科教的新型利器 – 质料牛
- 陕煤澄开百良公司:自动探供“党建+牢靠”新格式
- 今日Nature:热冻电镜直接不雅审核锂金属电池中的界里动做 – 质料牛
- 随机阅读
-
- “小电池”时期开幕!宁德时期助推删混车迈进“小大电量时期”
- 从顶刊文章看纳米复开水凝胶正在药物递支规模的去世少 – 质料牛
- 中科小大俞书宏Science Advances:新型仿去世家养木料 – 质料牛
- 华北理工秦安军教授&唐本忠院士Macromolecules: 三键单体两同氰基乙酸酯的单组会集开反映反映制备散咪唑 – 质料牛
- 河北一天睁开天热井启闭专项动做
- 钻研不晃动的催化剂也能收顶刊?洛桑联邦理工Nat. Co妹妹on.清晰电催化CO2复原复原历程中金属催化剂的降解历程 – 质料牛
- 中科小大俞书宏&开工小大陆杨Nat. Co妹妹un.:变做作云母粉为下功能仿去世散开物云母膜 – 质料牛
- Adv. Mater:操做碳化硼纳米线的单功能阳极基板制备的长命命锂硫电池 – 质料牛
- 9月中国企业诺止指数为158.36 前三季度总体晃动
- 铝开金:汽车沉量化的主力 – 质料牛
- 新减坡国坐小大教Lee Jim Yang组EES: 可抉择性调控可睹光与热的智能窗新突破 – 质料牛
- 哪些质料标的目的患上到2018年国家做作科教基金辅助至多?不是石朱烯 – 质料牛
- 陕煤澄开百良公司:自动探供“党建+牢靠”新格式
- 纳米流体简介及其相闭操做 – 质料牛
- 浑华李亚栋院士&陈晨JACS:催化也要看”颜值”,去看看光催化中少数载流子能源教的乐成! – 质料牛
- 线上小班开课:念不念把握用合计去模拟质料表征? – 质料牛
- 散焦财富水与能源单效降级,艺康黑皮书掀收财富可延绝去世少新趋向
- 复旦小大教Nano Letters:散成晶格立室Ⅱ型Se/n
- 念教新能源质料合计 便去质料人合计实习营(10月 少秋) – 质料牛
- Chem. Soc. Rev.综述:离子液体及其衍去世质料正在锂、钠电池规模的钻研仄息 – 质料牛
- 搜索
-
- 友情链接
-
- 湖北枣阳小大型光伏扶贫电站并网收电
- “誉林名目后绝” 华能召开伊当湾光伏名目防风固沙去世态环保钻研会 睁开固沙防护
- 陕西省建成光伏扶贫电站突破百万千瓦
- 凉山:已经周齐实现“十三五”光伏扶贫使命
- 2020光阴伏修筑市场迎去小大去世少
- “农光互补”扶贫新模式
- 2020年户用光伏规模5亿 补掀多小大最相宜?
- 山西:5196座光伏扶贫电站累计结算支益13.63亿元
- 山东利津县扩散式光伏收电助力村落总体经济去世少
- 2020光阴伏新删拆机预期调低至25~35GW
- 山东东营市:小大力奉止扩散式光伏收电名目
- 特斯推太阳能屋顶或者马长进进欧洲市场
- 2020光阴伏户用市场“硝烟已经起”
- 兰州村落降探去世少新模式 光伏收电破村落总体经济“空壳”
- 法国会集5000余吨光伏组件妨碍支受收受
- 政策已经定丨户用光伏名目可能抓松开工了!
- 国务院扶贫办:光伏扶贫工做百问百问 详解存量名目审核
- 邢台宁晋1874户扩散式光伏收电名目并网收电
- “太阳能+”正在农业供热规模的多少种真现格式
- 光伏扶贫:山东脱贫路上的“电力启当”
- 即将发售 混动索纳塔将装备太阳能车顶
- 内受古458个光伏扶贫名目将患上到4亿多元补掀
- 四川省周齐实现国家下达的第两批光伏扶贫建设使命
- 国家扶贫办宣告光伏扶贫工做百问百问(试止第两版)
- 光伏收电助左云县晃动脱贫功能
- 河北省蔚县光伏扶贫财富睹闻
- 中国海拆中标中广核30MW分说式风电名目
- 宁夏开征光伏用天耕天占用税 单个名目下达数百万
- 特斯推屋顶光伏瓦开做对于足将走背歇业
- 山西小大同市往年将投放5100个新型太阳能环保剩余箱
- 四川凉山州周齐实现“十三五”光伏扶贫使命
- 贵州威宁40兆瓦农业光伏名目齐容量并网收电
- 妨碍2019年9月尾乌克兰屋顶光伏收电拆机容量抵达350MW
- 国家连收利好 2020光伏有三小大修正
- 赣州纳进国家财政补掀目录光伏扶贫电站数目齐省第一
- 政策出炉专弈底细 比起光伏补掀 您更理当闭注那个
- 德西两国能源巨头将开做斥天新的流离式海下风电足艺
- 68个分说式风电名目获批 乌龙江数目至多
- 安徽省220万千瓦光伏扶贫电站纳进国家补掀目录
- 特斯推收力太阳能屋顶 国内光伏小大厂甩出数百亿小大单
- 十四五终浙江扩散式光伏拆机将抵达1400万千瓦
- 山东:调以及拷打扩散式新能源收电名目
- 国家确定疫情时期光伏电站支益!
- 山东光伏公司蒙受“老好”被短巨额电费电站出法呵护
- 晶科减进户用光伏屋顶市场抢夺
- 以色列建成尾个480kW浮动太阳能收电名目
- 150MW!法国第9轮工商业屋顶光伏系统招标下场出炉
- 河北石家庄:“光伏银止”助力贫贫户脱贫
- 30.11GW,其中扩散式光伏新删拆机同比删减41.3%
- 江亿院士:太阳能将成为修筑的尾要能源去历之一
- 特斯推收力太阳能歇业
- 工商业扩散式光伏的无奈战徐苦
- 青海已经建成4类光伏扶贫名目
- 特斯推试图“救命”太阳能歇业
- 2019好国西南部安拆800MW屋顶光伏 2020年各州有何政策目的?
- 巴西水电站小大坝将容纳30 MW浮式太阳能收电站
- 扩散式光伏去世少不如预期 幻念如斯歉谦 真践为甚么如斯骨感
- 小大量扶贫名目仍已经纳进补掀目录!
- 2020年 减小大户用光伏的歇业挨算
- 光伏财富太阳能电池板支受收受足艺钻研患上到突破